A generalization of quasi-twisted codes: Multi-twisted codes
نویسندگان
چکیده
Cyclic codes and their various generalizations, such as quasi-twisted (QT) codes, have a special place in algebraic coding theory. Among other things, many of the best-known or optimal codes have been obtained from these classes. In this work we introduce a new generalization of QT codes that we call multi-twisted (MT) codes and study some of their basic properties. Presenting several methods of constructing codes in this class and obtaining bounds on the minimum distances, we show that there exist codes with good parameters in this class that cannot be obtained as QT or constacyclic codes. This suggests that considering this larger class in computer searches is promising for constructing codes with better parameters than currently best-known linear codes. Working with this new class of codes motivated us to consider a problem about binomials over finite fields and to discover a result that is interesting in its own right.
منابع مشابه
New Construction of A Family of Quasi-Twisted Two-Weight Codes
— Quasi-twisted (QT) codes are a generalization of quasi-cyclic (QC) codes. Based on consta-cyclic simplex codes, a new explicit construction of a family of 2-generator quasi-twisted (QT) two-weight codes is presented. It is also shown that many codes in the family meet the Griesmer bound and therefore are length-optimal. codes are also obtained by the construction.
متن کاملNew Construction of 2-Generator Quasi-Twisted Codes
— Quasi-twisted (QT) codes are a generalization of quasi-cyclic (QC) codes. Based on consta-cyclic simplex codes, a new explicit construction of a family of 2-generator quasi-twisted (QT) two-weight codes is presented. It is also shown that many codes in the family meet the Griesmer bound and therefore are length-optimal. codes are also obtained by the construction.
متن کاملConstacyclic and quasi-twisted Hermitian self-dual codes over finite fields
Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields are studied. An algorithm for factorizing xn − λ over Fq2 is given, where λ is a unit in Fq2 . Based on this factorization, the dimensions of the Hermitian hulls of λ-constacyclic codes of length n over Fq2 are determined. The characterization and enumeration of constacyclic Hermitian self-dual (resp., complementary dua...
متن کاملLong quasi-polycyclic t-CIS codes
We study complementary information set codes of length tn and dimension n of order t called (t−CIS code for short). Quasi-cyclic and quasi-twisted tCIS codes are enumerated by using their concatenated structure. Asymptotic existence results are derived for one-generator and have co-index n by Artin’s conjecture for quasi cyclic and special case for quasi twisted. This shows that there are infin...
متن کاملThe Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes
One of the most important problems of coding theory is to construct codes with best possible minimum distances. Recently, quasi-cyclic (QC) codes have been proven to contain many such codes. In this paper, we consider quasi-twisted (QT) codes, which are generalizations of QC codes, and their structural properties and obtain new codes which improve minimum distances of best known linear codes ov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finite Fields and Their Applications
دوره 45 شماره
صفحات -
تاریخ انتشار 2017